
1

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Jaql: Querying JSON data on Hadoop

Kevin Beyer

Research Staff Member
IBM Almaden Research Center

In collaboration with Vuk Ercegovac, Ning Li, Jun Rao, Eugene Shekita

2

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Outline

Overview of Hadoop
JSON
Jaql query language

3

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

The Hadoop Stack

Components:

Horizontal features:
– Used at large scale (e.g., 10,000 cores at Yahoo)
– Elastic (w/out data re-org)
– Fault tolerant (getting there…)
– Easy to administer

Non-features:
– No data model or types in HDFS or HBase
– No indexing
– No query language

HDFS

HBase

Map-Reduce

Distributed file system

Simple distributed database

Parallel batch processing

4

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

HDFS Overview

Single file-system stored on direct-attached disks of commodity servers
Replicate file blocks for failures
Simplified file system interface– not Posix

– Designed for large, sequential reads

HDFS
Switch

Rack 1 Rack N

Server: 2-4 disks

File:

Typically 64 MB blocks

Switch Switch

5

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

HBase Overview

p127532 itemType: “car” make: “VW” doors: 2

p187842 itemType: “apartment” rooms: 3 rent: 1200

…

column
namekey

column
value

location: “45E, 32N”

HDFS
Redundancy through
HDFS replication

Column values
– Are versioned
– Stored vertically in HDFS: <key, column, timestamp, value>

…
…

So
rt

ed
 b

y
ke

y

Logical view of table Physical view of table

No schema, no types

6

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Map-Reduce Overview

Input Output

M1

M4

M2

M3

R1

R2

Vi [Km, Vm] Km, [Vm] [Vr] Programmer focus:
– Map: Vi → [Km,Vm]

– Reduce: Km, [Vm] → Vr

System provides:
– Parallelism

– Fault tolerance

– Key partitioning (shuffle)

– Synchronization

– Map task reads local block

sh
uf

fle

7

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Example: Counting Words

Mi

R2

R1

(Document Line) [(Word, Count),…] (Word, [Count, Count, …]) Word, Count

“The following example is
simple and is the ‘Hello, World’
for Map-Reduce”

the, 2
following, 1
example, 1
…

the, [2,1,13,7,7]
following, [2,1]

example, [1]

the, 30
following, 3

example, 1

Aggregate locally when possible (combine step)

(Vi) (Km,Vm) (Km, [Vm,…]) (Vr)

8

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Outline

Overview of Hadoop
JSON
Jaql query language

9

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

What is JSON?

JSON == Java Script Object Notation
BNF (from www.json.org):

value ::= record | array | atom

record ::= { (string : value)* }

array ::= [(value)*]

atom ::= string | number | boolean | null

http://www.json.org/

10

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

JSON Example

[
{ publisher: 'Scholastic', author: 'J. K. Rowling', title: 'Deathly Hallows', year: 2007 },

{ publisher: 'Scholastic', author: 'J. K. Rowling', title: 'Chamber of Secrets', year: 1999,
reviews: [

{ rating: 10, user: 'joe', review: ‘The best ...’ },
{ rating: 6, user: 'mary', review: ‘Average ...’ }]},

{ publisher: 'Scholastic', author: 'J. K. Rowling', title: 'Sorcerers Stone', year: 1998},

{ publisher: 'Scholastic', author: 'R. L. Stine', title: 'Monster Blood IV', year: 1997,
reviews: [

{ rating: 8, user: 'rob', review: 'High on my list...‘ },
{ rating: 2, user: 'mike', review: 'Not worth the paper ...' }]},

{ publisher: 'Grosset', author: 'Carolyn Keene', title: 'The Secret of Kane', year: 1930 }
]

[] == array, {} == record or object, xxx: == field name

11

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Why JSON?

Need nested, self-describing data
– Data is typed, without requiring a schema

– Support data that vary or evolve over time

Standard
– Wide-spread Web 2.0 adoption

– Bindings available for many programming languages

Not XML
– XML data is untyped without schema validation

– XML was designed for document mark-up, not data
Easy integration in most programming languages

– JSON is a subset of Javascript, Python, Ruby, Groovy, …

12

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Outline

Overview of Hadoop
JSON
Jaql query language

13

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Jaql: A JSON Query Language
Designed for JSON data
– With additional atomic types: e.g., dateTime, binary

Designed for many environments
– Massive-scale cloud computing

– Rewrite queries to use Map-Reduce
– Micro-scale embedded in browser

Designed for extensibility
– Read / write data from any source into JSON view of data
– Add new functions

Functional query language
– Few side-effects: e.g., writing to a file
– Functions are data

Draw on other languages
– SQL, XQuery, PigLatin, JavaScript, Lisp, Python …

14

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Jaql using Map

// Query: equivalent map-reduce job in Jaql
mapReduce({
input : {type: ‘hdfs’, location: ‘books’ },
map : fn($b) {

if exists($b.reviews) then
[[null, {$b.author, $b.title }]]},

output : {type: 'hdfs', location: ‘reviewedBooks’}})

// Query: Find the authors and titles of books that have received a review.
$reviewed = for $b in hdfsRead('books')

where exists($b.reviews)
return { $b.author, $b.title };

hdfsWrite(‘reviewedBooks’, $reviewed);

Rewrite Engine M

Map (book $b) -> {$b.author, $b.title}

M

M

books reviewedBooks

Jaql’s use of function as data ->

evaluate “fn” in Map task

Turn query into plan

Plan is another query!

15

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

JSON

I/O Extensibility

I/O layer abstracts details of data location + format
Examples of data stores:

– HDFS, HBase, Amazon’s S3, local FS, HTTP request, JDBC call
Examples of data formats:

– JSON text, CSV, XML
– Default format is JSON binary

Simple to extend Jaql with new data stores and formats

JSON
I/O

Layer

I/O

Layer
Jaql Interpreter

books reviewedBooks

Map Task

16

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

// Write the result to a local CSV file
hdfsWrite(‘bookPrices’, { converter: ‘CSVWriter’ }, $result}

// Query: Group Books and Purchases to return book titles w/associated purchase prices
$result = group $b in hbaseRead(‘books’) by $bid = $b.key into $books,

$p in hdfsRead(‘purchases’) by $bid = $p.bid into $purchases
return { bid: $bid, title: $books[0].title, prices: $purchases[*].price };

I/O Extensibility Example

Example: return purchase prices per book
– Books stored in HBase

– Purchases stored in HDFS

– Output to a CSV file for graphing
Use multiple InputFormats

User defined format

{bid: 123, books: [{…, title: ‘Deathly Hallows’,…}], purchases: [{bid: 123, price: 6.50,…},
{bid: 123, price: 3.43,…}, …]}

{bid: 789, books: [{…, title: ‘Chamber of Secrets’,…}], purchases: [{bid: 789, price: 10.99,…},
{bid: 789, price: 6.75,…}, …]}

{ bid: 123, title: ‘Deathly Hallows’, prices: [6.50, 3.43] }

{ bid: 123, title: ‘Chamber of Secrets’, prices: [10.99, 6.75] }

Co-group: “outer equi-join”

bid, title, purchases

123, ‘Deathly Hallows’, 6.50:3.43:…
789, ‘Chamber of Secrets’, 10.99:6.75:…

17

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Jaql I/O Extensibility using MapReduce
// Query: Group Books and Purchases to return book titles w/associated purchase prices
$result = group $b in hbaseRead(‘books’) by $bid = $b.key into $books,

$p in hdfsRead(‘purchases’) by $bid = $p.bid into $purchases
return { id: $bid, title: $books[0].title, prices: $purchases[*].price };

// Write the result to a local CSV file
hdfsWrite(‘bookPrices’, { converter: ‘CSVWriter’ }, $result });

// Query: equivalent map-reduce job in Jaql
mapReduce({

input : [{type: ‘hbase’, location: ‘books’ },
{type: ‘hdfs’, location: ‘purchases’}],

map : [fn($b) { [[$b.key, $b]] },
fn($p) { [[$p.bid, $p]] }],

reduce : fn($bid, $books, $purchases) {
[{ id: $bid, title: $books[0].title,

prices: $purchases[*].price }] },

output : { type: 'hdfs', location: ‘bookPrices’,
options: { converter: ‘CSVWriter’ }}})

Rewrite Engine

RM

M R

Map (book $b) -> [$b.key, $b]
Map (purchases $p) -> [$p.bid, $p]

- Partition & sort by $bid Reduce ($bid, $books,
$purchases)

Extract id, title, prices

18

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Expression Extensibility Example
Example: segment books by their reviews’ sentiment

– Extract sentiment [0 = awful, 9 = best seller!] from each book

– Return list of books per sentiment score

// Query: analyze book reviews
$scoredBooks = for $b in hbaseRead(‘books’)

return { $b.title, score: extractSentiment($b.reviews) };

// Query: aggregate according to sentiment score
$sentiments = group $s in $scoredBooks by $score = $s.score into $books

return { score: $score, books: $books };

// Write the result
hdfsWrite(‘sentimentReport’, $sentiment);

Extend Jaql with user defined expression

Why user defined extension?
– 3rd party libraries

– Better expressed using a programming language
Currently support Java, working on additional languages

19

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Aggregation Example
Example: compute the stddev of sentiment per region

– Join books and purchases for geographic region information

– Group books by geographic region

– Calculate standard deviation of book sentiments per region

// Query: analyze book reviews
$scoredBooks = for $b in hbaseRead(‘books’)

return { $b.id, score: extractSentiment($b.reviews) };

// Query: join scoredBooks with purchases
$bookPurchases = join $s in $scoredBooks on $s.id,

$p in hadoopRead(‘purchases’) on $p.bid
return { $s.id, $s.score, $p.region };

// Query: aggregate by region
$regionStddev = group $bp in $bookPurchases by $r = $bp.region into $books

return { region: $r, stddev: stddev($books[*].score) };

// Write the result
hdfsWrite(‘sentimentReport’, $regionStddev);

20

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Aggregation Example using Map-Reduce (1)
// Query: aggregate by region
$regionStddev = group $bp in $bookPurchases by $r = $bp.region into $books

return { region: $r, stddev: stddev($books[*].score) };

// Write the result to a local CSV file
hdfsWrite(‘sentimentReport’, $regionStddev);

// Query: equivalent map-reduce job in Jaql
mapReduce({

input : […],

map : fn($bp) { [[$bp.region, $bp]] },

reduce : fn($bid, $books) {
[{ region: $r, stddev: stddev($books[*].score) }] },

output : { type: 'hdfs', location: ‘sentimentReport’ } })

Rewrite Engine

Standard deviation computed over large regions!

21

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Distributive Aggregates

Standard deviation is distributive
– Final result can be computed from partial aggregates

Map-Reduce can compute partial aggregates at Mapper
– Map->Combine->Reduce

Jaql’s interface for distributive aggregates (for stddev):
– Init($score):

– { n: 1, s: $score, s2: $score*$score }
– Combine($a, $b):

– { n: $a.n + $b.n, s: $a.s + $b.s, s2: $a.s2 + $b.s2 }
– Final($p):

– sqrt($p.s2/$p.n – ($p.s/$p.n) * ($p.s/$p.n))

22

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Aggregation Example using MapReduce (2)

// Query: equivalent map-reduce job in Jaql
mrAggregate({

input: { type: ‘hdfs’, location: ‘books’ },

init: fn ($bp) {
[$bp.region, { n: 1, s: $bp.score,

s2: $bp.score*$bp.score }]},

combine: fn ($a, $b) {
{ n: $a.n + $b.n, s: $a.s + $b.s, s2: $a.s2 + $b.s2 }},

final: fn ($r, $p) {
[{ region: $r,

stddev: sqrt($p.s2/$p.n – ($p.s/$p.n)*($p.s/$p.n)) }]},

output: { type: 'hdfs', location: ‘sentimentReport’ }})

Rewrite Engine

RM

M R

// Query: aggregate by region
$regionStddev = group $bp in $bookPurchases by $r = $bp.region into $books

return {region: $r, stddev: stddev($books[*].score)};

// Write the result to a local CSV file
hdfsWrite(‘sentimentReport’, $regionStddev);

23

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Related Work

SQL, XQuery
Sawzall (Google)

– Wrap Map in a scripting language + library of Reducers
– Proprietary and not a query language

Pig (Yahoo)
– Own data model vs. Jaql designed for JSON
– Designed for Yahoo’s data– no types, not fully composable

Hive (Facebook)
– Data warehouse catalog + SQL-like language

DryadLinq (Microsoft)
– Dryad: DAG of compute vertices and communication edges
– Linq: embed data access in the programming language stack

Groovy for Hadoop

24

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Research Topics

Usability
– Additional Jaql features
– Integration with programming languages

Data model:
– How much do we pay for dynamic typing?
– How to take advantage of schema information?

Optimization:
– Indexing
– Join strategies

– Incorporate basic costs
– More rewrites
– Incremental compilation
– Exploit HBase

– Filters can be pushed into HBase
– Projections have implied predicate (r.x => x exists for record r)

– Code generation

25

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Summary

Scale-out infrastructure for analytics
Hadoop: popular, open source scale-out infrastructure
JSON provides a data model for Hadoop

– Semi-structured and designed for data
Jaql provides a query language for Hadoop

– Rich analytics run in parallel

– Extensible language and I/O layers

26

IBM Almaden Research Center

Jaql: Querying JSON data on Hadoop © 2008 IBM Corporation

Questions?

	Outline
	The Hadoop Stack
	HDFS Overview
	HBase Overview
	Map-Reduce Overview
	Example: Counting Words
	Outline
	What is JSON?
	JSON Example
	Why JSON?
	Outline
	Jaql: A JSON Query Language
	Jaql using Map
	I/O Extensibility
	I/O Extensibility Example
	Jaql I/O Extensibility using MapReduce
	Expression Extensibility Example
	Aggregation Example
	Aggregation Example using Map-Reduce (1)
	Distributive Aggregates
	Aggregation Example using MapReduce (2)
	Related Work
	Research Topics
	Summary
	Questions?

